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Methods from physics are being used in AI
Physics Artificial Intelligence



Outline

● Energy Driven Pattern Formation and non-local isoperimetric problems.
○ Previous work on a non-local Ginzburg-Landau energy
○ Applications AI: Image segmentation, reconstruction and noise removal.

● Optimal Transportation and Dynamical Systems.
○ Relevance in AI: Transfer learning, image segmentation, color transfer.
○ Previous work related to chaotic dynamics in weather models using OT. 

● Reinforcement learning and offline policy selection.
○ Effective email campaigns via offline policy discovery.
○ Python code and simulations. 



Energy Driven Pattern 
Formation

Asymptotics of two-phase energies



Modeling phase transitions

● The scale of the phase transition.

● Represents the two phases of the material or 
image. 

● Either a mass constraint or boundary conditions 
are imposed.



How do we understand it?
We can compute the Euler Lagrange equation

In one dimension:

● Thus we have a phase transition of order 
epsilon which occurs between the two states. 

● The size of the edges shrinks as epsilon 
shrinks. 

● Can we understand this asymptotically?



Understanding limiting behavior

Can we understand the limiting behavior by a simpler 
asymptotic functional?

Sets of finite perimeter.



An optimal lower bound

Assume:

Then:



An optimal lower bound

Coarea formula

Cauchy Schwarz

Surface Energy

[Modica and S. Mortola., 1977]



The local term - Modica Mortola 
Minimizer is the ball

But is this lower 
bound too low?

Goal: We can understand pattern formation of the 
physical system by the geometry of this functional? 

Physics

Goal: Can we remove small oscillations, segment 
images or classify them? 

Machine Learning



Gamma Convergence

For each                                           there exists a recovery sequence, 
ie.

S.t                          and

For every         there is a        such that

Lower Bound

Upper Bound ● Perimeter minimizing is 
not convex. But we are 
now have a way of 
finding a minimum!

Almost minimizers 
converge to minimizers:

[E. De Giorgi and T. Franzioni ,1975]



Adding Coulombic Repulsion

● Competing non-local term added to surface tension (ie. charged phases). 

● Now there is a complex interaction between wanting to minimize surface area and 
separating the phases. Two phases want to separate. 

● Do we still obtain minimal surfaces? How do they separate?



Context
● We study a regime where one phase is very 

small compared to the other one

● Pure phase

● Pure phase

● What happens in between? Let’s start from 
 and increase second phase slightly.



Re-scaling “droplet density”

Physical/Numerical observations
● The droplets seem to be uniformly 

distributed.

● They all seem to have the same 
size and be spheres.

● There seems to be a lattice 
structure forming.



Main Result I: First order limit

Conclusion: All droplets are approximately round and have the same volume. 
Moreover the energy has a constant density minimizer - equal distribution!

[Goldman et. al, 2012] Constant density so 
minimizers are 
equidistributed!



Main Result II: Second order correction

Derive a second order correction which governs the 
location of each droplet

[Goldman et. al, 2013]

● Prove that over all possible lattice structures, 
the Abrikosov lattice has minimal energy 
[Serfaty, 2010]

○ This is the first rigorous result in the 
direction proving this observation.

http://www.youtube.com/watch?v=hGZ-0VGANow


General Critical Points
●  [Goldman et. al, 2013] We show that in all 

dimensions, non-minimizing critical points 
converge to the uniform distribution of droplets.

●  [Goldman et. al, 2013] We provide the first 
rigorous proof that non-minimizing critical points 
have an asymptotically smooth boundary up to a 
small set. 

● [Goldman et al, 2012] Any connected planar set 
converges exponentially fast to the circle when 
the non-local term is sufficiently small. 

● This generalizes the well known theorem of 
Gage [Gage, 1983] to the non-local energy. 



Applications to AI

Applications to image processing include:
● Denoising, Segmentation, Reconstruction.
● Basic idea is to use the knowledge of Gamma 

convergence to find a minimizer of a surface 
energy which filters out some of the 
oscillations (but not all).

● [Zhang, 2009] uses the non-local term as a 
form of regularization (ie. it favors small 
oscillations).

● [Peyré, 2011] Image restoration using 
non-local sharp interface version of energy.

● Perimeter is not strictly convex, so we can’t 
guarantee we find a global minimum.

● The diffuse energy IS however and we now know 
that minimizers converge in a stable way!

MRI Segmentation using Gamma Convergence  [Yoon Mo Jung, 2007]





Optimal Transportation and 
Dynamical Systems

Connections to domain transfer, image 
Processing and results in fluid mechanics.



Motivation 

● Image segmentation.
● Image classification and object detection.
● Color transfer
● Sound processing. 

● In machine learning, we usually 
model data as a joint probability 
distribution. In many cases we 
need to adapt our models to 
account for changes such as 
lighting, noise, color, etc. 
 

● Optimal Transport is the perfect 
tool for comparing empirical 
distributions.



Some examples

2015

2013

2017

2016

2018



The Optimal Transport Problem

How do we transfer one mass to 
another in a way which minimizes 
transport cost?

Problem: The constraint on T is 
not convex!

[Monge, 1781]

Example:



The Optimal Transport Relaxed

● Is the set of all probability 
measures with marginals 

● Also known as the set of 
transportation plans.

● This relaxed problem is now convex and therefore 
solvable (although may be degenerate).

● Take the example of (mass splits):

[Kantorovich,1942]

0.5 0 0

0.5 0 0

0 0 0



Discrete optimal transport

[Brenier, 95] If the measures are continuous, the optimal 
joint probability is supported on the graph of a convex 
function T. (ie. solves original problem) 1D



Python Simulation of 1D case

http://pot.readthedocs.io/en/stable/

http://pot.readthedocs.io/en/stable/


Fluid Mechanics Formulation

● Key observation is that the PDE 
preserves the structure of the 
transport map through a 
Lagrangian flow.

● This was used to improve time 
complexity by restricting class of 
solutions [Brenier, Benamou, 
2000].

Exploits famous “displacement 
interpolation” by [McCann, 1985]

This formulation helps us formulate a well known 
meteorological model in the framework of optimal 
transport.



Semi-geostrophic approximation 

Flow can be recast as an optimal transport 
problem in “dual” variables



Optimal Transport Formulation
● When restricted to an elliptical 

domain, the dynamics remain on a 
2D ellipse for all time and have a 
Hamiltonian structure [McCann, 
2007]

● Problem is an optimal transport 
between the two ellipses which 
stay ellipses (constrained to lie on 
the finite dimensional 
submanifold. )

Phase space
[McCann, 2017]



Periodic perturbations

● Integrating M along all points 
gives a measure of “distance” 
between the manifolds. 

● This is known as the Melnikov 
Method [Melnikov, 1983].



Main Result III: Chaotic Dynamics

[Goldman, McCann,2008]

For all but countably many frequencies, the 
dynamics are chaotic. How is this relevant?



Applications to AI: Stable Image Classification

● Constructs a symmetric variant of the forward propagation 
which can be recast as a Hamiltonian system (which therefore 
preserves data). 

● Uses explicit estimates on the eigenvalues to guarantee well 
posedness

● Says nothing about general stability of the phase space.

[Haber et al., 2017]



Applications to AI: Stable Image Classification

● By constraining the form of f, they prove 
well posedness of the forward 
propagation scheme. 

● It may be interesting to consider similar 
variations of image noise and determine 
when such perturbations will lead to 
divergence of the models.

● Interesting to see how this compares to 
[Goodfellow et al., 2017] which use 
adversarial training.

Unstable Stable
What about optimal transport?



Applications to AI: Domain Adaptation and Transfer 
Learning

Reweighting schemes [Sugiyama et al., 2008] 
- Distribution change between domains. 
- Reweigh samples to compensate this change

Subspace methods 
- Data is invariant in a common latent subspace.  
- Minimization of a divergence between the projected domains [Si et al., 

2010]. 
- Use additional label information [Long et al., 2014]. 

Gradual alignment 
- Alignment along the geodesic between source and target subspace [R. 

Gopalan and Chellappa, 2014]. 
- Geodesic flow kernel [Gong et al., 2012].

All methods assume:
-  You can transport entire domain to 

the other one (eg. PCA)
- Some very specific relationship 

between the distributions (same 
conditional distributions).



Applications to AI: Transfer Learning via OT

Courty et al. [2016] 1. Train a classifier on 

2. Find optimal transportation 
plan between      and      (note 
only need marginals which are 
expectation over y).

3. Train classifier on transported 
samples with labels.



Performance Comparison - Two Moon Problem

Different
regularizations

Courty et al. 
[2016]

L2 cost 
between
domains

PAC-Bayesian 
Perspective 



Examples used for evaluation

Office Caltech Dataset 
http://www.vision.caltech.edu/archive.html

Courty et al. [2016]

http://www.vision.caltech.edu/archive.html


Results on Caltech dataset

Model used was 1NN.



Deep Neural Nets and Transfer Learning
[Ying Lu et al., Sep 2017]

● We have some very small training sample.
● We have a large collection of labeled related 

source data. 
● Can we use relationships between source and 

target to help the final classifier?

Training: Boeing manufacturer Source: All others



Deep Neural Nets and Transfer Learning
[Ying Lu et al., Sep 2017]

+



Solving the transportation problem

● This is all great, but his this problem tractable?

● The above problem is a linear program with convex constraints. 
This has polynomial time complexity to solve (           in worse 
case).

● [Curti, 2013] - what is the maximum entropy solution? Obviously 
when we spread mass evenly across all points.
 

● There is only one way to do this so solution is trivial. So can we 
restrict to a neighborhood around this trivial solution?

Maximum Entropy Solution



Shrinking the admissible space
[Curti, 2013] Entropic Regularization

● Makes problem strictly convex and allows one to solve using 
Sinkhorn Knopp fixed point method, which has linear complexity.

● Makes OT usable for deep learning applications!

Trivial 
solution

Dual version:



More Applications to AI

Image editing [Perrot , 2017]

Color transfer, [J Rabin, 2014]

Image tagging and segmentation 
[Frogner et al, 2015]

Solving mazes



Where did the transport map go?
Drawbacks of Kantorovich formulation:

● Doesn’t naturally extend to out of sample 
predictions. Ie. it can only be used on the samples 
given.

● This is a severe limitation for most applications 
where the generalization unseen data is essential.

[Courty et al. 2016] propose approximating the transport 
map by the joint distribution.

[Brenier, Benamou, 2000], Complexity of solution 
improved by Fluid Mechanics Formulation.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.6791&rep
=rep1&type=pdf

The time complexity of optimal transport is still 
an issue facing large scale use. However it is 
mentioned in [Papadakis, 2017]:

“In this context, the fluid dynamic formulation 
of the Optimal Transport problem introduced 
in [Brenier, Benamou, 2000] is an interesting 
approach for dealing with higher dimensions. 
The entropic regularization proposed in 
[Courty, 2013]  has also offered new 
perspectives as faster algorithms based on 
Sinkhorn distances can be designed for 
computing approximate Optimal Transport in 
larger dimensions.”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.6791&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.6791&rep=rep1&type=pdf


Future Directions

1. Stability of image classification under realistic perturbations to pixels.
2. Image classification under fluid flow: complexity vs performance. 
3. Voice recognition via optimal transport (ie. Echo?)
4. Translation?
5. Build robust libraries for general use related to reinforcement learning, image 

processing, etc. 



Thank you!



Reinforcement Learning

Choosing optimal policies from historical data



Uplift Modeling vs AB Testing

Uplift Modeling AB Testing

Which variation is 
better?

Which variation is better for 
each individual?



What are we trying to maximize? Total Reward

Distribution of actions and 
rewards (ie. clicks).

Distribution of logged data (outcome, action, user attributes)

● Reward y for action a 
and attributes x.

● Policy - what action 
does person with 
attributes x get? Can 
be stochastic or 
deterministic.

● Distribution of 
population.



How do we test a policy?

● Reward y for action a 
and attributes x.

● Policy (unknown) - what 
action does person 
with attributes x get?

● Distribution of 
population (known).

● Observed action from 
actual data - this is 
what we actually know 
(known). 

Importance sampling is roughly the idea of 
writing the expectation in terms of the desired 
distribution, using the known one. 



Connecting to the population distribution

We can estimate the 
expectation now 
from our observed 
data. 



Empirical Distribution Examples

● Half the values are 0 and 
half are 1 for a randomized 
controlled trial

● In the special case that 
both outcomes and 
actions are uniformly 
distributed across the 
population,  



Estimating Expected Reward

This is known as 
importance 
sampling.



Policy Function

Each user gets some specific deterministic 
action, determined by h.



1D Example - Should we send an email?

Age of user i

Policy based on age

Simulated Data (eg. AB test) What maximizes expectation 
here? 

Answer: We want h to predict the 
action right when we had a 
positive outcome.

Age dist.

Only people over 30 
responded well.



1D Example - Should we send an email?

Age of user i

Policy based on age

Simulated DataSimulated Data (eg. AB test)

● We want to only send to 
people over 30 in this case.

● Derivation is by inspection so 
far but will address this.



Policy Function

The normalization accounts for when the outcome is highly correlated 
with the action. Ie. Only people who received the action responded 
positively.

Example:



Solving? Classification in Disguise!

We just need to solve a weighted 
classification problem now and train a 
model to classify      where y is large. 

Set a deterministic 
policy for the 
possible actions.

● Our way of dealing with the 
denominator. Above problem 
isn’t well posed. 

●



Sanity Checks

1. Everyone purchases.

2. Nobody purchases.

3. You can only choose one action, 
independent of x. 



Sanity Checks

1. Everyone purchases.

2. Nobody purchases.

3. You can only choose one action, 
independent of x. 

Doesn’t matter. No 
learnings.

Doesn’t matter. No 
learnings.

The action which 
maximizes conversion 
rate.



Optimizing the Policy

● Thus the expectation 
maximization can be 
understood as minimizing a 
weighted classification loss.

● We can solve the problem 
by trying out various priors 
such as Bernoulli (Logistic), 
piecewise constant 
(Decision Tree).

● Then we find the best policy 
by find the maximum 
likelihood estimator.



Python Package for Uplift

https://github.com/doriang102/foraws

https://github.com/doriang102/foraws


Next Steps: Sequences of policies

https://homes.cs.washington.edu/~zoran/orderingpaperExtended.pdf

History up to time t.

Feature vector  - x, 
history.

Action weight.

https://homes.cs.washington.edu/~zoran/orderingpaperExtended.pdf


MDP via Policy Gradients

Best path

https://github.com/Columbia-Intro-Data-Science/APMAE4990-/blob/master/notebooks/Ma
rkov%20Decision%20Processes%20via%20Policy%20Gradients.ipynb

Reward

Start

https://github.com/Columbia-Intro-Data-Science/APMAE4990-/blob/master/notebooks/Markov%20Decision%20Processes%20via%20Policy%20Gradients.ipynb
https://github.com/Columbia-Intro-Data-Science/APMAE4990-/blob/master/notebooks/Markov%20Decision%20Processes%20via%20Policy%20Gradients.ipynb


Policy to maximize Reward

Markov property



Policy Gradient Trick

Now we can use our samples again to estimate this.



Some magic



A nudge in the right direction
A stochastic gradient descent based 
on the training example updates the 
weight in the “right” direction, 
weighted by the observed reward.



Initialize Weights



Iterate and find shortest path



Some fake data simulated

Package Simulation: 
https://github.com/CondeNast/personalization/blob/master/uplift/Uplift%20Modeling%20Simulation.ipynb

 1. Features:
       - Feature1 : can_afford product
       - Feature2 : knows_product
       - Feature3 : likes_product
       - Feature4 : current subscriber

   2. Outcome (aka reward, response) = 1, if:
       - can_afford==1 & knows_prod ==1 & likes_prod ==1, regardless of sub and action
       - can_afford==1 & knows_prod ==0 & likes_prod ==1 & sub==0 or 1 & action ==1
       - can_afford==1 & knows_prod ==1 & likes_prod ==0 & sub==1 & action ==0
       - can_afford==1 & knows_prod ==0 & likes_prod ==0 & sub==1 & action ==0
       - can_afford==0 & knows_prod ==0 & likes_prod ==1 & sub==1 & action ==1
       - can_afford==0 & knows_prod ==1 & likes_prod ==1 & sub==1 & action ==1
       - can_afford==0 & knows_prod ==0 & likes_prod ==0 & sub==1 & action ==0
      else outcome = 0

https://github.com/CondeNast/personalization/blob/master/uplift/Uplift%20Modeling%20Simulation.ipynb


Melnikov Method

Source: http://inspirehep.net/record/1477863/plots

● To leading order, when the stable and 
unstable manifolds are close, the distance at 
any particular point can be approximated by 
the distance along the normal to the original 
orbit.

● Integrating along all points gives a measure 
of “distance” between the manifolds. 

● This is known as the Melnikov Method 
[Melnikov, 1983].

http://inspirehep.net/record/1477863/plots


Method of Melnikov

Phase space shows 
existence of homoclinic 
orbits.



Thank you!



Following Gradient Flow



Dual Formulation



Applications to AI: Image tagging

KL divergence is combined with a Wasserstein loss to 
improve performance 
https://papers.nips.cc/paper/5679-learning-with-a-wasser
stein-loss.pdf

https://papers.nips.cc/paper/5679-learning-with-a-wasserstein-loss.pdf
https://papers.nips.cc/paper/5679-learning-with-a-wasserstein-loss.pdf


Applications to AI: OT with barriers

Uses optimal transport 
on a riemannian 
manifold.



Applications to AI: Color transfer

1. Define clusters for the colors using 
neighborhood metric.

2. Compute OT mapping between 
source and target images based on 
color histograms.

3. Compute color transfer.



Applications to AI: Image segmentation



Monte Carlo Estimator



[Bredies et al., 2015] [Peyré, 2011] 




