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Methods from physics are being used in Al
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Qutline

e Energy Driven Pattern Formation and non-local isoperimetric problems.
o  Previous work on a non-local Ginzburg-Landau energy
o Applications Al: Image segmentation, reconstruction and noise removal.
e Optimal Transportation and Dynamical Systems.
o Relevance in Al: Transfer learning, image segmentation, color transfer.
o  Previous work related to chaotic dynamics in weather models using OT.
e Reinforcement learning and offline policy selection.

o Effective email campaigns via offline policy discovery.
o Python code and simulations.



Energy Driven Pattern
Formation

Asymptotics of two-phase energies



Modeling phase transitions

EN(u) = /962|Vu\2 + §(u2 —1)*

€ e The scale of the phase transition.

= HI(Q) ] Represents the two phases of the material or
image.

e FEither a mass constraint or boundary conditions
are imposed.




How do we understand it?

We can compute the Euler Lagrange equation

d

: E(u+vs)=0

s=0

> —Au=u(u® —1)

In one dimension:

u(x) ~ tanh T %
€

e Thus we have a phase transition of order
epsilon which occurs between the two states.

e The size of the edges shrinks as epsilon
shrinks.

e Can we understand this asymptotically?

In [29]:

eps = [20,15,10,5,1]

x0=0

omega = np.linspace(-100,100,1000)

plt.figure(figsize=(8,5))

for e in eps:
u = [math.tanh((x-x0)/e) for x in omega ]
plt.plot(omega,u,label="Epsilon="+str(e))
plt.legend()
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Understanding limiting behavior

EN(u) = /962|Vu|2 + §(u2 —1)*

np.linspace(-100,100, )
lllllllll (figsize=(8,5))
eps:
u = [math.tanh((x-x0)/e) a ]
plt.plot(omega,u,label="Epsilon="+: (e))
plt.legend O
- B 2 2
ors — Gt [ —€ AU — u(u o 1)
|
;
;’ Can we understand the limiting behavior by a simpler
' asymptotic functional?

£°(u) = Fo(u) + 0,(1)
u € BV({_|_1’ _1}) Sets of finite perimeter.



An optimal lower bound

" 1
| / 62|Vu\2 + —(u2 — 1 / / |Vu|\u 1|
0 2

Assume: lim sup ;Ee(ue) < 400

e—0

Then: u* —ue{-1,1}




An optimal lower bound

/GQ\V’LL\2 +
Q

1

2

(w2 — 1)?

[Modica and S. Mortola., 1977]

€
2 / —/IVUHUQ—H Cauchy Schwarz
o V2

+oo Coarea formula
/ Vul|lu* — 1| = / / |s* — 1|dH" *(s)ds
Q —oo Ju"1(s)

+o0 +o0
/ / |5 — 1|dH" ' (s) ds = / 8% — 1|/ dH™ ' (s)ds
—oo Ju"l(s) —00 u~1(s)

w s ue {11} [ Per(u(e) = 1) [ |5 = 1]ds = ZPer(ufa) =

d
T Vuldz dy ~ %dﬁds

4

Surface Energy



The local term - Modica Mortola

+00 A A Minimizer is the ball
/ / 2 — 1|ds dH™ () = —/ A () — -/ Yl
u1(s) J—o0 3 u—1 3 Q ,,® /,Q

Physics Machine Learning

But is this lower
bound too low?

Goal: We can understand pattern formation of the Goal: Can we remove small oscillations, segment
physical system by the geometry of this functional? images or classify them?



Gamma Convergence

[E. De Giorgi and T. Franzioni ,/1975]
e T 4
Almost minimizers
Lower Bound ~_ converge to minimizers:
For every 14 thereisa U such that \ 4

argmin, £ + o.(1) — argmin, —Per(u)
ut —ue{-1,1} 3

lim inf £ (u®) > %/ |Vl
3 Jao

e—0
Upper Bound e Perimeter minimizing is
Foreach u € BV ({41, —1}) there exists a recovery sequence, not convex. But we are
o now have a way of
= c ol (Q) finding a minimum!

4
¢ lim & (u°) = —/ |Vl
St Uu°- —>  and =0 3 Jq



Adding Coulombic Repulsion

1
£(u) = /962|Vu|2 (et = D2+ = a3,

e Competing non-local term added to surface tension (ie. charged phases).

e Now there is a complex interaction between wanting to minimize surface area and
separating the phases. Two phases want to separate.

e Do we still obtain minimal surfaces? How do they separate?



Context

We study a regime where one phase is very

small compared to the other one

Pure phase

Pure phase

What happens in between? Let’s start from ¢y =

u

u

+1
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Re-scaling “droplet density”

Physical/Numerical observations
e The droplets seem to be uniformly

N distributed.
1 _2 1 1
—€ 3 | lOg 6‘ 3 (1 + ue) = — E Azéxz e They all seem to have the same
2 N i—1 size and be spheres.
e There seems to be a lattice
structure forming.
N=2 N=3 N=4 N=5
° ® ® %
@ n ® 7€ = —1+ 23| log ¢|'/35
® z 8 .
®
© o i "




Main Result |: First order limit

52 26
—4/3 1 —1/3E€ L EO = 32/3 /d ~ . —
e °|log € — E7(p) 5.2 + = T N min EO =
I
+ G(xr —y)d d :
(Goldman et, al, 2012 [, cle-winaint,
minimizers are

equidistributed!

—ZA& 2o in C*(T?)

lim sup
ol ] log €|

|A; —73%22 =0 limsu P — /A A; = 0
2 pllogdz —AG + K2G = p1

EI’y €—>O
o€ = —1+ 23| log ¢|/35

Conclusion: All droplets are approximately round and have the same volume.
Moreover the energy has a constant density minimizer - equal distribution!



Main Result Il: Second order correction

3
e 3 nel P min £ = E°() + | Ine| ™! (34/3 min W + —p + 06(1)>

4

Derive a second order correction which governs the i Attty B o R

location of each droplet

N=2 N=3 N=4 N=5 © 0000000000000
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N N h

Wz, zn) = Y Gla;—ay) R

1 -1 e Prove that over all possible lattice structures,

= the Abrikosov lattice has minimal energy

[Serfaty, 2010]

o This is the first rigorous result in the
[Goldman et. al, 2013] direction proving this observation.



http://www.youtube.com/watch?v=hGZ-0VGANow

General Critical Points

e [Goldman et. al, 2013] We show that in all
dimensions, non-minimizing critical points
converge to the uniform distribution of droplets.

e [Goldman et. al, 2013] We provide the first
rigorous proof that non-minimizing critical points L L
have an asymptotically smooth boundary up to a
small set. L2 > 47 A I[? =47 A

e [Goldman et al, 2012] Any connected planar set

converges exponentially fast to the circle when

the non-local term is sufficiently small. Flu) = / Vul +v G(lz — yl|)dz dy
e This generalizes the well known theorem of ¢ .

Gage [Gage, 1983] to the non-local energy.




Applications to Al

Perimeter is not strictly convex, so we can’t
guarantee we find a global minimum.

The diffuse energy IS however and we now know
that minimizers converge in a stable way!

Applications to image processing include:

e Denoising, Segmentation, Reconstruction.

e Basicidea is to use the knowledge of Gamma
convergence to find a minimizer of a surface
energy which filters out some of the
oscillations (but not all).

e [Zhang, 2009] uses the non-local term as a
form of regularization (ie. it favors small

\ oscillations).
e [Peyré, 2011] Image restoration using

non-local sharp interface version of energy.




Non—local

\

29.65dB 28.68dB 30.03dB



Optimal Transportation and
Dynamical Systems

Connections to domain transfer, image
Processing and results in fluid mechanics.




Motivation

e |n machine learning, we usually
model data as a joint probability
distribution. In many cases we
need to adapt our models to
account for changes such as
lighting, noise, color, etc.

e Optimal Transport is the perfect
tool for comparing empirical
distributions.

Image segmentation.

Image classification and object detection.
Color transfer

Sound processing.

Noisy signal

L !
200 300
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L
400
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Some examples

Optimal Transport for Deep Joint Transfer Learning

Learning with a Wasserstein Loss

Charlie Frogner* Chiyuan Zhang* Hossein Mobahi
Center for Brains, Minds and Machines CSAIL
Massachusetts Institute of Technology Massachusetts Institute of Technology
frogner@mit.edu, chiyuan@mit.edu hmobahi@csail.mit.edu
Mauricio Araya-Polo Tomaso Poggio
Shell International E & P, Inc. Center for Brains, Minds and Machines
Mauricio.Araya@shell.com Massachusetts Institute of Technology

tp@ai.mit.edu

2015

Optimal Transport for Domain Adaptation

Nicolas Courty, Rémi Flamary, Devis Tuia, Senior Member, IEEE,

Alain Rakotomamonjy, Member, IEEE

2016

Ying Lu Liming Chen Alexandre Saidi
Ecole Centrale de Lyon, France
{ying.lu, liming.chen, alexandre.saidi}@ec-lyon.fr

2017

Wasserstein Dictionary Learning:
Optimal Transport-based unsupervised non-linear dictionary learning

Morgan A. Schmitz*, Matthieu Heitzf, Nicolas Bonneel', Fred Ngole!, David Coeurjolly’,
Marco Cuturi®, Gabriel PeyréY, and Jean-Luc Starck*

Abstract. This article introduces a new non-linear dictionary learning method for histograms in the probability
simplex. The method leverages optimal transport theory, in the sense that our aim is to reconstruct
histograms using so-called displ interpolations (a.k.a. in barycenters) between
dictionary atoms; such atoms are themselves synthetic hi in the ility simplex. Our
method simultaneously estimates such atoms, and, for each datapoint, the vector of weights that
can optimally reconstruct it as an optimal transport barycenter of such atoms. Our method is
computationally tractable thanks to the addition of an entropic regularization to the usual optimal
transportation problem, leading to an approximation scheme that is efficient, parallel and simple to
differentiate. Both atoms and weights are learned using a gradient-based descent method. Gradients
are obtained by ic di iation of the ized Sinkhorn iterations that yield barycenters
with entropic smoothing. Because of its formulation relying on Wasserstein barycenters instead of the
usual matrix product between dictionary and codes, our method allows for non-linear relationships
between atoms and the reconstruction of input data. We illustrate its application in several different

image processing settings.

Sinkhorn Distances:
Lightspeed Computation of Optimal Transport

Marco Cuturi
Graduate School of Informatics, Kyoto University
meuturi@i.kyoto-u.ac.jp

2013



The Optimal Transport Problem

W) = inf /Q (30, T (x)) (%) dx

TH#p=v

[Monge, 1781]

— .. T : QS — Qt
L9 . y A _ T—l A
Q. Q0 (A) = (T(A4))

Example:
I

o2 08
o _ k ®,°
falf et AN
Q.'so o © : °
9. Py o o

C(Xs, Xp) = [|1Xs = x4 )"

How do we transfer one mass to
another in a way which minimizes
transport cost?

Iy
) Problem: The constrainton T is
R not convex!

ﬂ;' Kz



The Optimal Transport Relaxed

[Kantorovich,1942]
Distributions Reg. OT matrix with A=1e-3 W(//Lj V) = lnf / C(:C7 y)dfy (XS7 Xt)
- YET (1,v) J o, x
.. " = S
o:'C’ ".o s
e S . =
R Target a1 1 . " e This relaxed problem is now convex and therefore
ot - L™ solvable (although may be degenerate).
° '."‘. e ;1 e Take the example of (mass splits):
H B
L (@ y)
F 1% o Y3 , 0.25
M, e |sthe set of all probability : 4
measures with marginals vl 025
e : \ / Vi dfD
e Also known as the set of Sl X \y [ "
transportation plans. g o . T1 T3
p= 0z, + —0 v= 50y + 20y, + 1(5!/3

e N 2 4



Discrete optimal transport

\§

[Brenier, 95] If the measures are continuous, the optimal T(X ) _ V\Ij (X )
S - S

joint probability is supported on the graph of a convex
function T. (ie. solves original problem)

— Source Us
— Target u;
— cxy)

— FV_1 e F,LL(XS)




Python Simulation of 1D case

008

o e o In [11]: | #8% EMD
= Target distribution
006
GO = ot.emd(a, b, M)
004
pl.figure(3, figsize=(5, 5))
002 ot.plot.plotlD mat(a, b, GO, 'OT matrix GO')
000 OT matrix GO
] 2 40 @ &0 100
P 0 20 40 @ ) 100
‘ » < T
2
40
40

http://pot.readthedocs.io/en/stable/



http://pot.readthedocs.io/en/stable/

Fluid Mechanics Formulation

vEr (p,v)

W(p,v) = inf /stgy c(z,y)dy(z,y)
Op+V-(pv)y=0 p0,.)=po p(T,.) = pr
K(p.v) :T/Rd /OTp(t,:c)|v(t,:z:)\2d:c dt
X(0,2) =2 9,X(t,x) =v(t,X(t,x))

X(t2) = 2 + %(ch(x) )

Key observation is that the PDE
preserves the structure of the
transport map through a
Lagrangian flow.

This was used to improve time
complexity by restricting class of
solutions [Brenier, Benamou,
2000].

Exploits famous “displacement
interpolation” by [McCann, 1985]

.

This formulation helps us formulate a well known
meteorological model in the framework of optimal
transport.

Il

t=1/4 t=1/2 t=23/4

t=1



Semi-geostrophic approximation

Making a first order approximation to (1) we ignore the

Recall the 2D incompressible Euler equations on a bounded _ : .
acceleration terms and get the geostrophic velocity

domain Q c R? with Coriolois paramater fy = 1 can be written

- Pu 9 3 Uug := JV¢.
—+J~u:—V¢>whereJ::<1 0 ) (1)
Dt This yields
Du
V-u=0 ) —Dt9+Ju=—v¢
Here the advection operator is defined as V-u=0
D Equations (5)—(6) are know as the 2D Semigeostrophic
Do _siuv. @) quations (5)—(6) geostrop
Dt equations.
Note that (6) allows one to write u = JV for a stream function
s b Y :R2 - R.
Eulerian —+v-V= — Lagrangian
)/ f o
/13"" oot Flow can be recast as an optimal transport
f problem in “dual” variables
/S;Jatially fixed Following the motion

volume element of the fluid element



Optimal Transport Formulation

The equations have a canonical Hamiltonian structure and can
be written as,

%(r, 0) = JVHg;(r,6), (10)

Hass —_—\1/2
ZG(r,e):g2s+r—a(2+2rs+2cos9\/(r2—1)(52—1)) , ()

det(D*@)p1 (V¥ (x)) = po().

e When restricted to an elliptical
domain, the dynamics remain on a
2D ellipse for all time and have a
Hamiltonian structure [McCann,
2007]

e Problem is an optimal transport
between the two ellipses which
stay ellipses (constrained to lie on
the finite dimensional
submanifold. )

AT |

Phase space
[McCann, 2017]



Periodic perturbations

|

x = f(x) x = f(x) +eg(x,e,t).
4
Y
P ik
:).\ S A[(f())
Ve =W W* + W

Simple zero: M(#) = 0 and M'(ty) #0

We consider a time periodic perturbation of the physical
domain eccentricity in our Hamiltonian:

dt

g (r,0) = JVHZS(r, 0)+ecos(kt + kip)

0,S

OH
J—5C
0s

(¢%).

Integrating M along all points
gives a measure of “distance”
between the manifolds.

This is known as the Melnikov
Method [Melnikov, 1983].



Main Result lll: Chaotic Dynamics

[Goldman, McCann,2008]

We consider a time periodic perturbation of the physical

domain eccentricity in our Hamiltonian:

d

dt

For all but countably many frequencies, the
dynamics are chaotic.

0
—(r,0) = JVHZS(r, 8)+€cos(kt + kty)JV

o,S
SG

0s

+ O(é?).

ey %
‘\P J \\.fl’/
- T
7, L
Ws # W

How is this relevant?



Applications to Al: Stable Image Classification

Hi(l(l('n
/ \

Topu Yj+1 _ Yj + ho (YjKj + bj) [Haber et al., 2017]
) o(Y) = tanh(Y)

|

y(t) = o(K' ()y(t) +b(t))

° Constructs a symmetric variant of the forward propagation
which can be recast as a Hamiltonian system (which therefore
preserves data).

e Uses explicit estimates on the eigenvalues to guarantee well
posedness

e Says nothing about general stability of the phase space.



Applications to Al: Stable Image Classification

y(t) — _VZH<y’ Z, t) e By constraining the form of f, they prove
well posedness of the forward

Z(t) — VyH(y, Z, t) propagation scheme.
1 . . o
T e |t may be interesting to consider similar
H(y,z) = -z z+ f(y) oy e ] . .
(Y7 variations of image noise and determine

2 when such perturbations will lead to

Input

.
LR Ko (Ko) Soei divergence of the models
15 L S SS Sy T L5 SSSSSSSAASNY :
TINNNNNNNNKNKAN 2222 ’ Tparrsa
RN T 7 2 24 Ao ] SNSRI NSNS SN PR
NNRNRARAARA 8 72 7227000000 AN UL/ AN
NONHEAT R ey - -
K 1 = 77777 2
N 27222 NN ey e Interesting to see how this compares to
N i e I o o PR TETIe T SSHA:
NANKRA 2 S 5 1
AN EERTRERRAIAIIE T LA Le SSSSe IS il S [Goodfellow et al., 2017] which use
0 NNRENE oy 0 " 0 TTT¢¢¢¢¢¢*,,r;,¢ oyt
NANRRRRRKCR ¢ 1 SSSSSSSIINE SPPPPLPPRRRRDE LR LTI il . .o e
'\'\\’\'\\\r\f_i:¢ AAPAAZA7A AR R RRRRRRR SRR RS MMMMKHF:(kk“irtuul adversanal ‘tra”’“ng.
NN S e ey y A2 AT AR RRRRRRRRRRRRRRRNS K’\K’\R\’\RKKg“(kKKK‘[{ YL
NN ) V222777 1A RRRRRRNENNNNRRNNNE] RARKRRARR cs e bin g non oL o LY
R s & 27777 TR RAARARNNARR AR RRRRRRARRR e gremog oo s 5
R o, S0 AP Z AR AR AR R URARR Y PARRARRR Rt e ersme o o %4
RN A 77T TAARRRRRRARNNNRRRRRRRRY NARRARRS R Sttt e 50000
NS AR P2 TR AR R L0127
koo dd i L P AAR AR NSRS S ittt 00
_1plonananss i — 1.5 IIAASKARRAARIRRIRNANRARARRRRNY] - AR s
=15 0 1.5 =15 0 1.5 =1.5 0 1.5

What about optimal transport?

Unstable Stable



Applications to Al: Domain Adaptation and Transfer
Reweighting schemes [Sugiyama et al., 2008]

Learning
- Distribution change between domains.

- Reweigh samples to compensate this change @bi@@ © é_V;G)

oLsR
| g U i i
Feature extraction

A

Subspace methods
- Data is invariant in a common latent subspace.

- Minimization of a divergence between the projected domains [Si et al.,
2010].

- Use additional label information [Long et al., 2014].

_ All methods assume:
GraduaAII_ahgnmtenlt " dosic bet 4 target sub R You can transport entire domain to
- ignment along the geodesic between source and target subspace [R.
Gopalan and Chellappa, 2014]. the other one (eg. PCA)
- Geodesic flow kernel [Gong et al., 2012]. - Some very specific relationship

between the distributions (same
conditional distributions).



Applications to Al: Transfer Learning via OT

s . ne t_
o t
‘ ' I 8 po= D 0 M= Ph iy,
1 =1
2 o W W(/”“S? /Lt) = inf / C(xa y)df)/(XS’ Xt)
Qe Xy

]
T
yET (s, pt)

KGO

Courty et al. [2016] 1.  Train a classifier on €,

2. Find optimal transportation
plan between s and Mt (note

only need marginals which are

Dataset Optimal transport Classification on transported samples eX peCtatI O n Ove r y) .

3. Train classifier on transported
samples with labels.

n

X5 = argmin, cq, Zt%(z’,j)c(x, x;)
7j=1

+ O Samples T, (x7)




Performance Comparison - Two Moon Problem

Courty et al.
[2016]

L2 cost
between

(a) source domain

(b) rotation=20°

(c) rotation=40°

(d) rotation=90°

domains \| [ 10° 20° 30° 40° 50° i 90°
SVM (no adapt.) 0 0.104 0.24  0.312 0.4  0.764 0.828

PAC-Bayesian DASVM 0 0 0.259 0.284 0.334 0.747 0.820
Perepective -~ PBDA 0 0.094 0.103 0.225 0.412 0.626 0.687
OT-exact 0 0.028 0.065 0.109 0.206 0.394 0.507

Different = OT-IT 0 0.007 0.054 0.102 0.221 0.398  0.508

regularizations OT-GL 0 0 0 0.013 0.196 0.378 0.508

OT-Lap 0 0 0.004 0.062 0201 0.402 0.524




Examples used for evaluation

USPS MNIST PIEOS PIEQ7 PIEO9 PIE29 Calltech Amazon DSLR Webcam

4*@5“?

Courty et al. [2016]

L+LL
L2 Lt

Office Caltech Dataset
http://www.vision.caltech.edu/archive.html



http://www.vision.caltech.edu/archive.html

Results on Caltech dataset

TABLE 3: Overall recognition accuracies in % obtained over all domains pairs using the SURF features.

Maximum values for each pair is indicated in bold font.

Domains

OT-exact

OT-IT

OT-Laplace

OT-LpLq

OT-GL

U—-M

50.67

53.66

57.42

60.15

57.85

P2—P4 | 25.86 29.83 | 25.49 26.21  49.85 i
P3—P1 20.95 32.01 | 20.79 39.79 60.88 54.24 57.50 57.87 58.96 57.91
P3—P2 | 40.17 38.09 | 40.70 39.17  65.07 59.08 63.61 65.75 64.04 64.67
P3—P4 | 26.16 36.65 | 25.91 36.88  52.44 48.25 52.33 54.02 52.81 52.83
P4—P1 18.14 29.82 | 20.11 40.81 46.91 43.21 45.15 45.67 46.51 45.73
P4—P2 | 2437 29.47 | 23.34 37.50 55.12 46.76 50.71 52.50 50.90 51.31
P4—-P3 | 2730 39.74 | 26.42 46.14 53.33 48.05 52.10 52.71 51.37 52.60
" “mean | 26.22 3455 | 26.15 ~ 36.10  56.69 | 50.47 5480 =~ 56.10° ~ ~ 5545 = 5588
C—A 20.54 35.17 | 35.29 45.25  40.73 30.54 37.75 38.96 48.21 44.17
CoW 18.94 28.48 | 31.72 37.35 33.44 23.77 31.32 31.13 38.61 38.94
C—D 19.62 33.75 | 35.62 39.25  39.75 26.62 34.50 36.88 39.62 44.50
A—-C 22.25 32.78 | 32.87 38.46 33.99 29.43 31.65 33.12 35.99 34.57
AW 23.51 29.34 | 32.05 35.70 36.03 25.56 30.40 30.33 35.63 37.02
A—D 20.38 26.88 | 30.12 32.62  32.62 25.50 27.88 27.75 36.38 38.88
W—-C 19.29 26.95 | 27.75 29.02 31.81 25.87 31.63 31.37 33.44 35.98
WA 23.19 28.92 | 33.35 3494 3148 27.40 37.79 37.17 37.33 39.35
W—D 53.62 79.75 | 79.25 80.50 84.25 76.50 80.00 80.62 81.38 84.00
D—C 23.97 29.72 | 29.50 31.03 29.84 27.30 29.88 31.10 31.65 32.38
D—A 27.10 30.67 | 32.98 36.67 32.85 29.08 32.77 33.06 37.06 37.17
D-»W 51.26  71.79 | 69.67 77.48  80.00 65.70 72.52 76.16 74.97 81.06
" “mean | 2847 37.98 | 39.21 ~ 42.97 ~ 44.34 7| 36.69 ~ 4230 ~ ~ 43200 ~ T "46.42 | 4770

PCA, which consists in applying a projection
on the first principal components of the joint
source/target distribution (estimated from the
concatenation of source and target samples);
GFK, Geodesic Flow Kernel [23];

TSL, Transfer Subspace Learning [44], which op-
erates by minimizing the Bregman divergence
between the domains embedded in lower dimen-
sional spaces;

JDA, Joint Distribution Adaptation [34], which
extends the Transfer Component Analysis algo-
rithm [38];

uspPs
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Model used was 1NN.



Deep Neural Nets and Transfer Learning

[Ying Lu et al., Sep 2017]

ht (Xz)
—_— hs(xs) — [Ce(hs(x.s),ys)

source
Xs —» — f(xs) / fL’vg with xoﬁmax S hs(xt) " Zot (hs(Xt)-hz(Xt)) hs (Xi) —
X; —> convl ..., fc7 — f(xe) - / )

\ fc8 w;?}ﬁz}i‘max — hi(x) — Lee(he(xt), ye)

o (W f(x;) + by)
o (Ws - f(x;) + bs)

Figure 1: The structure and data flow of a Joint Transfer Learning Network based on Alexnet

e We have some very small training sample.

e We have a large collection of labeled related
source data.

e Can we use relationships between source and
target to help the final classifier?

Training: Boeing manufacturer Source: All others



Deep Neural Nets and Transfer Learning

[Ying Lu et al., Sep 2017]

[Ce hs s)sUs Dataset Optimal transport Classification on transported samples
P — — hs(xs) = Loe(hs(xs),ys) ; : —
Xs —p e8 with softmax — fr, % . S 20
— f(xs) e fe ofimax | — h(x;) Lor (R (Xe), he(Xe)) + S s e el
X, —> convl ..., fc7 —_ f(xz) \ / 4 L
target i A o ‘ A To()
fc8 with soﬁ‘max — hz(xt) —_ ece(ht(xt)) yt) u/// . . g K % o st /
(o) L i ¢ " Samples X! /
Figure 1: The structure and data flow of a Joint Transfer Learning Network based on Alexnet
1 nt )\ Ns
min — Z Leo(hy(xh),y!) + 22 Z Leo(hs(x5),15) +>\tW(,usa :U’t) Table 1: ITL Datasets with FGVC-Aircraft
© i s lmages Table 2: Experimental Results on the ITL Datasets

(results are multi-class classification accuracy)
Dataset properties | Boeing  Airbus

o Methods Boeing  Airbus
N°of target 2 13
categories

Finetuning on target 0.4796  0.4965

N° of target

o 1466 867 Consecutive finetuning
training images

on source+arget 0.5286  0.545

N° of target

testing images 734 433 Joint finetuning

on source +arget 0.5395  0.5497

N° of source

: 78 87 JTLN (fc7MKMMD)
categories

JTLN (fc70T)

N° of source
images

7800 8700




Solving the transportation problem

B={ye®R)" "1, = ps, v 1, =} 1= pid
1=1

fyo — argminvélgh/, C>F [ = ip%xf
=1

e This is all great, but his this problem tractable?

e The above problem is a linear program with convex constraints.
This has polynomial time complexity to solve ( O(n?)in worse
case).
Maximum Entropy Solution
e [Curti, 2013] - what is the maximum entropy solution? Obviously B
when we spread mass evenly across all points. o [pzilpé o

e There is only one way to do this so solution is trivial. So can we L T
restrict to a neighborhood around this trivial solution? Y =T1rc = [Ti Cj]z,]




Shrinking the admissible space

[Curti, 2013] Entropic Regularization

A

Dual version:

78[ - argminq/GBa <77 C>

r= i

Vo = argmin, cg(y, C)r + AM2s(7)
Qs(’y> - Z’Yi,j log 7(7’7])

Bo ={y € BlQ(y) = Q(r) — Q(c) = aj

y
N/ Ua(r,c) = {P €X(r,c)| KL(P|rc") < a}
A}

Trivial
solution

7pfz] c= [pﬁvpt% :

4

le-2

IS
I
3
a8

A=

=1
Distributions
° 8 ®
°
° °
o o {.
@ Source Us
: ® Target y;
% e
°
° ‘l‘
e ©

A=le-1

Reg. OT matrix with A=1e-3

) |
r)

= ’
q
= o,
- | ]
q
- -
&
b

Reg. OT matrix with A=1e-2

Makes problem strictly convex and allows one to solve using
Sinkhorn Knopp fixed point method, which has linear complexity.
Makes OT usable for deep learning applications!




. Flickr : street, parade, dragon Flickr : water, boat, ref ection, sun-shine
Eskimo dog Prediction : people, protest, parade Prediction : water, river, lake, summer;

Image tagging and segmentation
[Frogner et aI 2015]

Solving mazes

(¢) Optimal Transport (d) Adaptive model

Color transfer, [J Rabin, 2014]



Where did the transport map go?

Drawbacks of Kantorovich formulation:

e Doesn’t naturally extend to out of sample
predictions. le. it can only be used on the samples
given.

e This is a severe limitation for most applications
where the generalization unseen data is essential.

[Courty et al. 2016] propose approximating the transport
map by the joint distribution.

[Brenier, Benamou, 2000], Complexity of solution

improved by Fluid Mechanics Formulation.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.6 791&rep

=rep1&type=pdf

The time complexity of optimal transport is still
an issue facing large scale use. However it is
mentioned in [Papadakis, 2017]:

“In this context, the fluid dynamic formulation
of the Optimal Transport problem introduced
in [Brenier, Benamou, 2000] /s an interesting
approach for dealing with higher dimensions.
The entropic regularization proposed in
[Courty, 2013] has also offered new
perspectives as faster algorithms based on
Sinkhorn distances can be designed for
computing approximate Optimal Transport in
larger dimensions.”


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.6791&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.6791&rep=rep1&type=pdf

Future Directions

Stability of image classification under realistic perturbations to pixels.
Image classification under fluid flow: complexity vs performance.
Voice recognition via optimal transport (ie. Echo?)

Translation?

o H WN -

Build robust libraries for general use related to reinforcement learning, image
processing, etc.



Thank you!



Reinforcement Learning

Choosing optimal policies from historical data



Uplift Modeling vs AB Testing

Uplift Modeling AB Testing

I\ ® & & o
0
Sleepingl Dogs. o wwww 4 @ 4 23 A)
I 50 % visitors conversion
Persuadables see variation A —
Sure Things A{ Variation A

N : Y ® & & o
[e] eSS
Leave if don’t ,m In‘ w w } } 1 1 %
receive a retention offer 50 % visitors conversion

see variation B

L T— variation B

Leave if do
receive a retention offer

Which variation is better for Which variation is
each individual? better?




What are we trying to maximize? Total Reward

Ealy) := / y(2)Q(x)dw Lo

e Policy - what action
/ does person with

Q _ R H . attributes x get? Can
(y7 CL,ZC) T (y|a'7$) (CL’ZE)UJ(Q?)J\ be stochastic or
deterministic.
Q Distribution of actions and ° Distribu.tion of
rewards (ie. clicks). population.

Q Distribution of logged data (outcome, action, user attributes)



How do we test a policy?

Ay, a,z) = R(yla, 2)lI(a|lz)w(z);

Q(y, a, ) = R(yla, z)B(a|r)w(z)

Importance sampling is roughly the idea of
writing the expectation in terms of the desired
distribution, using the known one.

Reward y for action a
and attributes x.

Policy (unknown) - what

action does person
with attributes x get?

Distribution of
population (known).

Observed action from
actual data - this is
what we actually know
(known).




Connecting to the population distribution

Eql(y) == / y(2)Q)d
Uy, a,x) = R(y|a, z)I(a|z)w(z);

g — H(CL’CIS) ]\ce’\;epgi?aszgn;it\i;he

Q B(CL|[,C)7 / drgtn;ouro serve
[1(alx)

Eq(y) := /y(ﬁ)Q(ﬁ)da: — Z B(a‘x)yQ(y,a,x)



Empirical Distribution Examples

CL|£U Z(S CL—CLZ

a; € {0 = untreated, 1 = treated}, then B(a;) € {B(0), B(1)}

B(0) = B(1) = 1/2

1 N

Q(y,a,x) ~ N Z 0y —yi)o(a — a;)o(x — x;).

ZCZ'>, (]., O, .CCZ'), (O, ]., ZCZ'>, (0, O, SEZ)}

Half the values are O and
half are 1 for a randomized
controlled trial

e Inthe special case that

both outcomes and
actions are uniformly
distributed across the
population, Q; =i



Estimating Expected Reward

N

Eq(y) = Eqg (%y) ~ Z %yzQz =: Vi(y)

. 7
1=1

. N o
Vi(y) ~ Vily) = Z%yz@i This is known as
= importance
sampling.




Policy Function

h: X —a

h ( T ) ) Each user gets some specific deterministic
t “—— action, determined by h.

Zyz (a; —az‘};jz))



1D Example - Should we send an email?

[I(a;|x;) = 1(a; = h(x;))

]’L 0,4 —> (@ Policy based on age

Age dist.

\

Only people over 30
responded well.

X Age of useri

Simulated Data (eq. AB test)

What maximizes expectation

a; = 1 and z; > 30 then 1 here?
= 1 and xz; hen — 1
azth a dOCE‘Z < 30 the Answer: We want h to predict the
OLHErWISe action right when we had a
N 1(a . —h(:c _ )) positive outcome.
1 (A
Zi:l () B(CL7;|ZU¢)




1D Example - Should we send an email?

[I(a;|x;) = 1(a; = h(x;))

]’L 0,4 —> (@ Policy based on age

XT; Age of user i
Simulated Data (eq. AB test) 1, ifxz>30

=1 and 2; > 30 then 1 h(z) = -
a; = 1 and x; en 0, otherwise
a; =1 and z; < 30 then — 1
otherwise 0

L _ e We wantto only sendto
Zi\[ 1 i 1(22(_’?(:6)1)) people over 30 in this case.
- i |Tq

e Derivation is by inspection so
far but will address this.



Example:

Policy Function

hz) = {(1): icftiefw?i)soe
H(CLZ’QZL) — 1<CLZ = h(ﬂ?z)) a; = 1 and x; < 30 then 0

h: X —=a

N . N 1 ai:h T,
V B Zizl %Z%Qi B Zz':l Yi (B(ai|§3i)))
n(y) = SV I 3 iehia)

The normalization accounts for when the outcome is highly correlated
with the action. le. Only people who received the action responded
positively.



Solving? Classification in Disguise!

N ; N 17— )
~ Z._ &yZQZ ZiZl Y; (g(a, |§;B))) Set a deterministic
V) (y) — — LI policy for the
h ZN 1I; ZN 1(a;=h(z;)) possible actions.
i=1 B; ¢ =1 Blas|z;)

We just need to solve a weighted

classification problem now and train a e Our way of dealing with the
model to classify a; where y is large. denominator. Above problem
/ isn’t well posed.
[

(a; # h(;))
sz a“ xz —I_)\Z a sz‘le)i



Sanity Checks

1. Everyone purchases.

2. Nobody purchases.

3.  You can only choose one action,

independent of x.




Sanity Checks

1. Everyone purchases.

Doesn’t matter. No
learnings.
2. Nobody purchases.

Doesn’t matter. No
learnings.

3.  You can only choose one action,

independent of x.

The action which
maximizes conversion
rate.




Optimizing the Policy

LY(h) = Z w;e(a;, h(x;))

e(a;, h(x;)) =
W; = Y

1(a; # h(x;)

B(a;|z;)

Thus the expectation
maximization can be
understood as minimizing a
weighted classification loss.

We can solve the problem
by trying out various priors
such as Bernoulli (Logistic),
piecewise constant
(Decision Tree).

Then we find the best policy
by find the maximum
likelihood estimator.



Python Package for Uplift

Parameters

X_train : pandas dataframe
Full feature set for training.

action_train : pandas series or numpy array
Actions to be fitted for (a=@, 1 for binary actions
for multiclass classification).

outcome_train : pandas series or numpy array

Outcomes for X_train and action_train, used for sample weights.
lambda_ : float, optional, default = None . . .
oo oaremster for roiaril ACia Tiie ) remlarizers https://qgithub.com/doriang102/foraws
-infinity < lambda < min(reward)
. : dict, optional, default=e
Pre-defined cost to reward for each action. Only need to be passed
at cla initilization or ‘fit()
clf : object, optional
Classifier object to be fitted
set_best_mode’ boolean, optional, default=False
Set the current fitted model as attribute ‘best_model’.
plot_weight_his boolean, optional
Make diagnostic plot of sample weights

Comparison of uplift model and other policies

=== Random treatment

Return 2
e o DA
i £ BAU (action=0)
self : object g o0
Returns self. :
7 —e— Uplift model
=3
o
pel
'clf')) and (not clf): 7]
2
@ 6000
[
[=
=]
o
._check_LR_solver() w“—
o 4000
=
©
action_train = validate_nparray(action_train) =
outcome_train 1f._validate_nparray(outcome_train) [
._check_length(X_train, action_train) o
._check_length(X_train, outcome_train) g
eck_nu_(mu_) = 2000
_check_lanbda_(lambda_) 8
('fit: lambda_={0} , mu_={1}'.format(self.lambda_, g
.get_bias(action_train) =
weights .get_weights(action_train, outcome_train .lambda_, mi .mu_) [0] o 0
fitted .clf.fit(X_train, action_train, weights)
if set_best_model: ~
.update_best_model(fitted) 0 5000 10000 15000 20000 25000
if plot_weight_hist: =
B Number of customers out of N_tot=24944

plt.hist(weights)
plt.title('UplifModel.fit(): Sample Weights for model fitting')
return fitted



https://github.com/doriang102/foraws

Next Steps: Sequences of policies

=

3 az’,t|ht—1,i)

t=1

T

m(@ig, s Qiglhe-1) = H m(ailhi—1,)

t=1

eXp(—Q,iT - 1y)
Do, €xXp(=0; - Ur)

W(ai‘ht—l,i) =

T
2> nin :r ?“
e Hﬂ-qazla”

7

Ty
he—1;) b

Y

i1

(2
0;

https://homes.cs.washington.edu/~zoran/orderingpaperExtended.pdf

History up to time t.

Feature vector - x,
history.

Action weight.


https://homes.cs.washington.edu/~zoran/orderingpaperExtended.pdf

MDP via Policy Gradients

/ Start

>

10 4
10 1
08 - 08 -
0.6 - 06 1
0.4 - ” 04
. Best path 032 .
0.0 - 0.0 -

0.0 \ 02 0.4 0.6 038 10 0.0 02 0.4

Reward

https://github.com/Columbia-Intro-Data-Science/APMAE4990-/blob/master/notebooks/Ma
rkov%20Decision%20Processes%20via%20Policy%20Gradients.ipynb



https://github.com/Columbia-Intro-Data-Science/APMAE4990-/blob/master/notebooks/Markov%20Decision%20Processes%20via%20Policy%20Gradients.ipynb
https://github.com/Columbia-Intro-Data-Science/APMAE4990-/blob/master/notebooks/Markov%20Decision%20Processes%20via%20Policy%20Gradients.ipynb

Policy to maximize Reward
ElRlr] = [ plrim)R(r)
T = (CL(), S0, 70,01, 51,71, ,Q¢, S, rt)

T—1
p(T‘ﬂ') — H p(St_|_1 ’Sta at)ﬂ-(azt‘St). Markov property
t=1

e_estvst—l

PR

m(aylsy) =



Policy Gradient Trick

ViE[RIr] = [ Vap(rlr) R(r)
= [ o el R

=E, Velogp(ﬂ?f) (7)]

Now we can use our samples again to estimate this.




Some magic

T-1
log p(7|m) = log H P(St+1l5t, ar)m(ay|se)

t=1
T—1

— Z logp(8t+1 ‘St; Clt) + Z log 7T(at|5t)
t=1



A nudge in the right direction

A stochastic gradient descent based

¢ — t—=1 _ on the training example updates the
ekm ekm R(t) VH lOg @ (k | m) weight in the “right” direction,
weighted by the observed reward.
log w(klm) = —0k,, — log E e~ 0im
[

Vo, logm(klm) = w(klm) — 1,

In [22]: def gradient(k,m,alpha=0.1):
#denom = sum([np.exp(-theta[k,1]) for 1 in range(8)])
return R[k,m]*(W[k,m]-1)



Initialize Weights

t | s_current = 0
# Initialize Weights
W = np.matrix(np.ones(shape=(8,8)))
#wW *= 1/8

# Initialize Weights
theta = np.matrix(np.zeros(shape=(8,8)))

# Initialize Weights to be learned
for k in range(8):
W[k]=softmax(theta[k].squeeze())



lterate and find shortest path

best_path=[]
best_length=1000
found after = 0

for Zf‘:ﬁiiiii“f’é range(100): Qlim = Qt_l - R(t)Vg log 7r(k|m)

# Initialize Weights
theta = np.matrix(np.zeros(shape=(8,8)))

# Initialize Weights to be learned
for k in range(8):
W[k]=softmax(thetal[k].squeeze())

path=[]
for t in range(10):
reward=-1

while reward < 0:
s_next = np.where(np.random.multinomial(l, np.array(W[s_current,:]).squeeze(), size=1)==1)[1][0]
reward = R[s_current,s_next]

path.append( (s_current,s_next))
if reward == 100:
if len(path) < best_ length:
best_path = path
best_length=len(best_path)
found_after = simulation
break
#print (s_current,s next,R[s_current,s next])

reward next = R[s_current,s_next]
#print (s_next)
for m in range(8):
theta[s_current,m] = theta[s_current,m] + gradient(s_current,m,alpha=0.01)
for k in range(8):
W[k]=softmax(thetal[k].squeeze())
s_current = s_next

print ("Found best path " + str(best_path) + " after " + str(found after) + " simulations")



Some fake data simulated

Comparison of uplift model and other policies

--- Random treatment 1. Features:

é —— BAU (action=0) - Featurel: can_afford product

% 2000 —e— Uplift model - Feature2 : knows_product

3 - Feature3 : likes_product

E - Feature4 : current subscriber

© 000

E 2. Outcome (aka reward, response) = 1, if:

_g - can_afford==1 & knows_prod ==1 & likes_prod ==1, regardless of sub and action
lg 4000 - can_afford==1 & knows_prod ==0 & likes_prod ==1 & sub==0 or 1 & action ==
% - can_afford==1 & knows_prod ==1 & likes_prod ==0 & sub==1 & action ==0

q:, - can_afford==1 & knows_prod ==0 & likes_prod ==0 & sub==1 & action ==0

& 200 - can_afford==0 & knows_prod ==0 & likes_prod ==1& sub==1 & action ==

g - can_afford==0 & knows_prod ==1 & likes_prod ==1 & sub==1 & action ==

8 - can_afford==0 & knows_prod ==0 & likes_prod ==0 & sub==1& action ==

else outcome =0
0 5000 10000 15000 20000 25000
Number of customers out of N_tot=24944

Package Simulation:
https://github.com/CondeNast/personalization/blob/master/uplift/Uplift%20Modeling%20Simulation.ipynb



https://github.com/CondeNast/personalization/blob/master/uplift/Uplift%20Modeling%20Simulation.ipynb

Melnikov Method

W*(p)

d(©y)

(_F(O)t P(O))l@:@()

(q5(®, 60)~ p5(6* @0))

W= (p)

Source: http://inspirehep.net/record/1477863/plots

To leading order, when the stable and
unstable manifolds are close, the distance at
any particular point can be approximated by
the distance along the normal to the original
orbit.

Integrating along all points gives a measure
of “distance” between the manifolds.

This is known as the Melnikov Method
[Melnikov, 1983].


http://inspirehep.net/record/1477863/plots

Method of Melnikov

x = f(x) x = f(x) +eg(x,¢€,t).

Phase space shows
_— .. existence of homoclinic
—/ " orbits.

(») (b)

W =w*" W w
Simple zero: M(ty) = 0 and M'(ty) #0

We seek to evaluate

M) = [ svHgaom)asy e B

cos(kt + kty)dft.

So

o (GHZS PHZS  OHZS OHZS
:_/ ( 1 Sl Rl SG)(qo(t))cos(kt+kto)dt.

00 0sor or 0806



Thank you!



Following Gradient Flow

() t=4.0e3

(e) t=5e-3 (f) t=1e-2



Dual Formulation

McCann and Oberman (2004) make the quadratic ansatz that 1) and ¢ can be written
as

Y(t,X) = xT - W(t) - X + () - x + (1)
o(t,x) =x - d(t) - x.
Hoskins introduced the change of variables X = x + V¢ called dual variables. Defining
the geopotential
P(t;x) = 1Ex-x+q>,

note X = VP(t,x).
Assuming P(t, -) is convex we define the Legendre transform,

R(t,X) := P*(t,X) = sup X -y — P(t,y), 9)
yen

so x = VAR(t, X).
We now seek to model the SG evolution in dual variables



Applications to Al: Image tagging

Top-K cost
=
8

Flickr : street, parade, dragon

Prediction : people, protest, parade

I I

1T 1T 1T

—(—— Wasserstein AUC

~——— Divergence AUC

T T 1T

0.0

T
0.5

T
1.0
a

T
15

(a) Original Flickr tags dataset.

T T 17T

< 0.58 —— Wasserstein AUC
0.56 ~——— Divergence AUC
0.54 T T T
0.0 0.5 1.0 1.5 2.0

a

(b) Reduced-redundancy Flickr tags dataset.

Flickr : water, boat, ref ection, sun-shine
Prediction : water, river, lake, summer;

Wf + aKL

KL divergence is combined with a Wasserstein loss to
improve performance
https://papers.nips.cc/paper/5679-learning-with-a-wasser
stein-loss.pdf



https://papers.nips.cc/paper/5679-learning-with-a-wasserstein-loss.pdf
https://papers.nips.cc/paper/5679-learning-with-a-wasserstein-loss.pdf

Applications to Al: OT with barriers

@%@@@ Uses optimal transport
n a riemannian
T il = pruliiy = il S il vl manifold.

t= 1/9 t= 2/9 t= 1/3 t= 4/9

t= 5/9 t= 2/3 t= 7/9 t= 8/9




Applications to Al: Color transfer

1. Define clusters for the colors using
neighborhood metric.

2. Compute OT mapping between
source and target images based on
color histograms.

3. Compute color transfer.

TH#u(,U) = ) midsd7(,

1€lx

(c) Optimal Transport (d) Adaptive model

Image 1 Image 2

10 MappingTransport (linear)

EmdTransport

SinkhornTransport MappingTransport (gaussian)

0+ 00 "
00 02 04 06 08 10 00 02 04 06 08 10
Red Red




Applications to Al: Image segmentation

(a) Initial image (b) Segmentation



Monte Carlo Estimator

True reward

In [156]: h_true =1 - stats.norm(loc=20,scale=3).cdf(30)
h_true

Out[156]: 0.0004290603

Sampling from distribution

In [170]= = 10000
stats.norm(loc=20,scale=3).rvs(n)
= [1 if y val > 30 else -1 for y_val in y]

mc = 1.0/n * np.sum(y>30)

n
y
T
h
# estimate and relative error

h mc, np.abs(h _mc - h_true)/h_true

Out[170]: (0.0001000000, 0.7669325448)

Importance sampling

In [171]¢ [ 10000

y = stats.expon(loc=30).rvs(n)

h is = 1.0/n * np.sum(stats.norm(loc=20,scale=3).pdf(y)/stats.expon(loc=30).pdf(y))
# estimate and relative error

h is, np.abs(h_is- h_true)/h_true
Oout[171]: (0.0004298905, 0.0019349490)
D




(a) Input image

(b)) A=10 (dAr=2

|

) A=20 () A=10 @ Ar=5

Figure 5: Application to binary image segmentation for different data weights A: The first row shows
the input image, the second row shows the results for pure length-based regularization (a = 0), and the
third row shows the results for elastica-based regularization (@ = 10). Note that for smaller values of the
data weight, elastica-based regularization leads to a better preservation of elongated structures.

[Bredies et al., 2015]

[Peyré, 2011]
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